Search results for "random regular graphs"

showing 2 items of 2 documents

Adjacency matrices of random digraphs: singularity and anti-concentration

2017

Let ${\mathcal D}_{n,d}$ be the set of all $d$-regular directed graphs on $n$ vertices. Let $G$ be a graph chosen uniformly at random from ${\mathcal D}_{n,d}$ and $M$ be its adjacency matrix. We show that $M$ is invertible with probability at least $1-C\ln^{3} d/\sqrt{d}$ for $C\leq d\leq cn/\ln^2 n$, where $c, C$ are positive absolute constants. To this end, we establish a few properties of $d$-regular directed graphs. One of them, a Littlewood-Offord type anti-concentration property, is of independent interest. Let $J$ be a subset of vertices of $G$ with $|J|\approx n/d$. Let $\delta_i$ be the indicator of the event that the vertex $i$ is connected to $J$ and define $\delta = (\delta_1, …

0102 computer and information sciences01 natural scienceslittlewood–offord theory60C05 60B20 05C80 15B52 46B06law.inventionCombinatoricsSingularityanti-concentrationlawFOS: MathematicsMathematics - CombinatoricsAdjacency matrix0101 mathematicsMathematicsinvertibility of random matricesApplied Mathematics010102 general mathematicsProbability (math.PR)random regular graphsDirected graphsingular probabilityGraphVertex (geometry)Invertible matrix010201 computation theory & mathematicsadjacency matricesCombinatorics (math.CO)Mathematics - ProbabilityAnalysis
researchProduct

The rank of random regular digraphs of constant degree

2018

Abstract Let d be a (large) integer. Given n ≥ 2 d , let A n be the adjacency matrix of a random directed d -regular graph on n vertices, with the uniform distribution. We show that the rank of A n is at least n − 1 with probability going to one as n grows to infinity. The proof combines the well known method of simple switchings and a recent result of the authors on delocalization of eigenvectors of A n .

Statistics and ProbabilityControl and OptimizationUniform distribution (continuous)General Mathematics0102 computer and information sciencesrandom matrices01 natural sciencesCombinatoricsIntegerFOS: Mathematics60B20 15B52 46B06 05C80Rank (graph theory)Adjacency matrix0101 mathematicsEigenvalues and eigenvectorsMathematicsNumerical AnalysisAlgebra and Number TheoryDegree (graph theory)Applied MathematicsProbability (math.PR)010102 general mathematicsrandom regular graphssingularity probabilityrank010201 computation theory & mathematicsRegular graphRandom matrixMathematics - ProbabilityJournal of Complexity
researchProduct